Regular Cost Functions, Part I: Logic and Algebra over Words
نویسنده
چکیده
The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values “inside” and “outside”. This theory is a continuation of the works on distance automata and similar models. These models of automata have been successfully used for solving the star-height problem, the finite power property, the finite substitution problem, the relative inclusion star-height problem and the boundedness problem for monadic second-order logic over words. Our notion of regularity can be – as in the classical theory of regular languages – equivalently defined in terms of automata, expressions, algebraic recognisability, and by a variant of the monadic second-order logic. These equivalences are strict extensions of the corresponding classical results. The present paper introduces the cost monadic logic, the quantitative extension to the notion of monadic second-order logic we use, and show that some problems of existence of bounds are decidable for this logic. This is achieved by introducing the corresponding algebraic formalism: stabilisation monoids.
منابع مشابه
Deliverable D10: Structural theory of stabilization monoids
The theory of regular cost functions is a quantitative extension to the classical notion of regularity. A cost function associates to each input a non-negative integer value (or infinity), as opposed to languages which only associate to each input the two values “inside” and “outside”. This theory is a continuation of the works on distance automata and similar models. These models of automata h...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کاملLinear temporal logic for regular cost functions
Regular cost functions have been introduced recently as an extension to the notion of regular languages with counting capabilities, which retains strong closure, equivalence, and decidability properties. The specificity of cost functions is that exact values are not considered, but only estimated. In this paper, we define an extension of Linear Temporal Logic (LTL) over finite words to describe...
متن کاملDefinability and Transformations for Cost Logics and Automatic Structures
We provide new characterizations of the class of regular cost functions (Colcombet 2009) in terms of first-order logic. This extends a classical result stating that each regular language can be defined by a first-order formula over the infinite tree of finite words with a predicate testing words for equal length. Furthermore, we study interpretations for cost logics and use them to provide diff...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logical Methods in Computer Science
دوره 9 شماره
صفحات -
تاریخ انتشار 2012